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MODELS FOR ANTIBODY ATTACHMENT
TO VIRUS AND BACTERIOPHAGE

J. GANI
UNIVERSITY OF SHEFFIELD

1. Introduction

Several interestinlg mathematical problems concernied with partition into
classes, and surface covering are suggested by the physical mechanisms and
geometry of antibody attachment to virus particles. This paper outlines some
of the recent work done in this area by Yassky [7], myself [2], [3], Moran and
Fazekas de St. Groth [5] and Gilbert [4], adds a model and other extensions
of my own, and concludes with a suggestion for further investigations. I shall
endeavor throughout to hold the mathematical argumenit at a simple level, and
eml)hasize the model buiildinig aspect of the work, in the hope that virologists
may be tempted to use and l)erhaps verify experimeletally some of the models
put forward.

Let us consider at any time t > 0, a nutrienlt meditum (either in the laboratory,
or within a living aniimal) in which there exist a fixed iiumber N of particles of
a virus V; suppose that at time t = 0, there are xo > N antibodies released inito
this medium. We may expect the antibodies to attach themselves progressively
in some random fashion to the viruses, both types of particles beinlg subject to
Brownian motion. If each virus Iparticle permits a maximum of s attachments,
then at any time t > 0, the N virus will be divided into s + 1 classes consistinig
of no(t), ni(t), * * *, n,(t) particles with, respectively, 0, 1, * , s antibodies
attached to them; there will remain x(t) = xo - s= 1 ins(t) unattached antibody
particles. The {ni(t)} constitute a class partition of the virus particles, which
varies in time t. We may, for simplicity, in some cases, al)l)roximate the integer
valued random variables 0 _ ni(t) _ N, and 0 < x(t) _ xo by analogous funlc-
tions differentiable in t; then, as we shall see, a determiniistic approximation to
the random evolution of the {ni(t)} and x(t) can be founid. It is also possible to
obtaini a stochastic approximation to the integer valued -ni(t)' usiIng the previous
deterministic approximation for x(t).
While such results may indicate the number of antibody attachments to the

virus, they do not alone provide ade(quate informationi as to its loss of infectivity.
Two cases arise, however, in wlicil fulller iinformaationi cal b)e obtained. These are
the cases wheii
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538 FIFTH BERKELEY SYMPOSIUM: GANI

(1) the particle of virus V is approximately spherical, as it is for influenza, and
(2) the virus V is a bacteriophage.
In case 1, Moran and Fazekas de St. Groth [5] have shown that the attach-

ment of antibodies to a single approximately spherical virus particle may be
formulated as a problem of geometrical probability. Consider i cylindrical an-
tibodies in the shape of long cigars adhering by one of their ends to a particle
of spherical virus; each antibody when standing normally to the virus surface
shields a circular spherical cap (subtending a half angle a at the center of the
sphere) on it from contact with a healthy cell. For the influenza virus, the radius
of the sphere is 40 mIu, while the antibodies are of length 27 my so that the
shielded area subtends a half angle a = 53.43°. A sufficiently large number i of
such antibodies would result in a complete covering of the sphere and cause loss
of infectivity of the virus. Moran and Fazekas de St. Groth have obtained the
asymptotic value for large i of the probability P(i) that the sphere is covered
by i antibodies, and more recently Gilbert [4] has found general bounds for
this probability. If at any time t _ 0 we also know the partition of the N virus
particles into the classes {ni} of particles carrying i = 0, 1, . .. , s antibodies,
we can evaluate the probability of loss of infectivity of the virus at time t.

In case 2, it is known that a single antibody attachment to the bacteriophage
tail causes loss of infectivity. This means that of the s possible attachments, a
single particular one will suffice to prevent infectivity. Suppose we now parti-
tion the ni viruses with 1 < i < s - 1 antibody attachments into two classes
(1.1) 0 < n,,i-l _ N, 0 < no0 _ N, nj,j-j + noi = ni

where the first suffix indicates attachments to the tail and the second to any
other position on the virus. Clearly, nl,8_- = n8, noo = no. We shall show that the
{ni,i_1}, {noi}, with i = 1, - - -, s - 1 can be approximated by deterministic
values, and also obtained stochastically using the previous deterministic ap-
proximation to x(t). Loss of infectivity in the deterministic case results when all
virus particles have acquired tail antibody attachments; in the stochastic case
the probability
(1.2) P{nco = 0, no, = 0, no, .-,81 = 0}

will give a measure of the noninfectivity. We now proceed to consider these
cases in detail.

2. The attachment pattern of antibody to virus

Suppose we consider first a deterministic approximation to the attachment of
antibodies to virus particles with s possible emplacements. For time t > 0, let
the differentiable functions no(t), * * * , n8(t) approximate the number of particles
with 0, 1, * * *, s virus attachments, where _i ni(t) = N; also let x(t) = xo-
E, ini(t) be the antibodies remaining unattached at time t. Then if Xi, with
i = 1, -- , s (X. = 0), represents the attachment rate of a further antibody
to a virus particle already carrying i of these, it is readily seen that
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dno
= -_Xonox,

dt,

(2.1) dnt= (X_1ni1- in')x, i = 1, * * , 8,

dx
d -x= ini,i i=O

represent the state equations for the {ni(t)}, x(t). The initial conditions are

(2.2) no(O) = N, ni(O) = O, i = 1, ... , s, x(O) = xo.

Writing (2.1) in matrix form, we obtain following the transformation p(t) =

fo X(r) dT, that

(2.3) dn _Ln,dp-
where n' = (no, ni, * , n.) denotes the row vector of the {ni(t)} and

xo
-X0

(2.4) L== . . .
-X-2 X,-1

If L is written in the canonical form
(2.5) L = A-'AA,
where A is the diagonal matrix of eigenvalues Xo, , X., assumed distinct for
simplicity, then it is readily shown that the solution to (2.3) is

(2.6) n(t) = e-LP(t)n(O) = A-le-AP(t)An(O)
where n'(0) is the row vector (N, 0, * *, 0). The equation for dx/dt in (2.1)
becomes

(2.7) d = -xX'n(t) = -xX'A-le-AP(t)An(0),

where X' = (Xo, * , X.), and this may be rewritten as

d2p dp XAePtA()_ dpr(2.8) = dt -'A-1e-Ap(1)An(O) = _d i cie-xip(t)

the ci being constant coefficients of e-1iP(t). The explicit solution of this second
order differential equation would provide the complete values for the elements
of the vector n(t); however, such a solution cannot in general be found.
A particular case in which (2.8) can be solved was considered in a slightly

different context by Yassky [7]. Yassky postulated a linear relationship for the
attachment parameters of the type

(29) ), =.( i), a > 0̂
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and found that the system then simplified considerably. From (2.1) and the
relation xo = x + =1i ini, he obtained for x(t) the differential equation

dx + - dx(2.10) d+x a(s-i)nj = dt +a{x-N(m-s)}x =0,

where m = xo/N > 1 denotes the multiplicity of antibodies.
The solution to (2.10) is

(2.11) () eg'- m)
8eA' - m

where ,u = Na(s - m), and from it, the solutions for the ni(t) are directly
found to be

no(t) = N{e-t + s(s - m)-1(1 e-')}-",

(2.12) n1(t) = (s.) n0 {(N) -
J-i

n8(t) = N - ni(t).
i =o

If we assume the attachment of antibodies to occur as a Markov process, it
is simple to obtain the forward Kolmogorov equations for the probabilities
P(no, * - *, n.; x; t) that at time t, the viruses are partitioned into classes {ni}
and there are x unattached antibodies. Although such equations (of birth process
type) can be solved in principle, they prove to be rather intractable in practice,
and a simplification is helpful. This consists in considering the reduced stochastic
process for which x(t) is a deterministic differentiable function of t, while the
{ni} are stochastic variables.
Let {X0, * * *, X.} be the set of attachment parameters such that Xi > 0, for

i = 0, * *, s - 1, but X. = 0. The probability of attachment in time at of an
antibody to a virus already carrying i phages is assumed to be

(2.13) Xinix5t + o(8t),
where ni > 0 is the random number of bacteria having i attached phages,
i = 0, ... , s, and x(t) = dp/dt is the deterministic solution of equation (2.8).

Writing Q = Q(no, n1, * * *, n8; t) as the probability that at time t > 0 there
are nf, * - * , nf viruses with respectively 0, * , s attached antibodies, we find
for the forward Kolmogorov equations

(2.14) 9Q= E XinixQat i-o
8-1

+ E- Xi(ni + 1)xQ(no, ni + 1, ni+i -l * ** n.; t).
i=o

If p(uo, * , U.; t) is the probability generating function of these probabilities,
then equations (2.14) lead to

(2.15) = F- xix(ui+l- u1) a-(2.15) ~~~~ati=O u
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This is a particular case of the multivariate Markov process originally discussed
by Bartlett [1].

I was able to show [2] that for a general nonincreasing function x = x(t) for
unattached phages, the partial differential equation (2.15) can be solved to
obtain the probability generatiing function explicitly as

(2.16) sp(uoo , U.; t) = vE uiai(t)},

with probabilities

(2.17) Q no! N! . a.
of multinomial form, where the probabilities ai(t) are given by

(2.18) ai(t) = Bo-Ajie-iP(t), i = 0, * * ,
j=0

with
j-1

Boo = 1, Boj = HXr(rXj, j =)1,*'
r=O

(2.19) Aii = 1, Aji = II xr_1(X,-
r=j+l

j=0, *-,i- 1;i= 1,- ,

elements of the matrices B = A-1, A, respectively.
The expectations for this process are

(2.20) E(ni) = Nai(t),
and the variances Var (ni) and covariances Cov (n1, nj), i w j, are also easily
obtained. If the Xi take the special form (2.9) suggested by Yassky, then

(2.21) p(t) = f x(T)dr = - log (s e-,)
and the expectations Nai(t) reduce to the expressions (2.12) found for the fully
deterministic case.

3. The covering of spherical virus particles: loss of infectivity

The problem of covering a spherical virus particle by a sufficient number of
cylindrical antibodies standing normally to its surface, thus preventing virus
contact with healthy cells, has been outlined in section 1. We saw that this was
reducible to the geometrical problem of covering a sphere randomly by circular
caps, each cap subtending a half angle & at its center.
Moran and Fazekas de St. Groth have pointed out in their paper [5] that the

problem is a generalization of Stevens' [6] random distribution of i arcs of
length x on a circle of unit circumference, for which the asymptotic probability
of coverage for large i is
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(3. 1) P(i) i(l- x) i-l.

Using extremely ingenious approximation methods, and assuming a < 90°
to be small or of moderate size (as in the case where a = 53.43° for the sphere
of radius 40 mpi, and an antibody of length 27 mu), and the number of uncovered
regions to follow a Poisson distribution, Moran and Fazekas de St. Groth
obtained the asymptotic probability of coverage for large i as

(3.2) P(i) exp - 2 [{2 (1 + Cos ) 2 2 )}

More recently Gilbert [4] has derived for a = 90° the exact result

(3.3) P(i) = 1- (i2 -i + 2)2-i, i > 1,
and has obtained quite generally, for any angle & < 90° when i > (sin2 1d)-1 +
1, the bounds

(3.4) 1-4 i(i - 1)(1 -sin2 6&)isin2 l a < P(i) < 1- (1 - sin2 2 aX

for the probability P(i) of coverage of the sphere.
These results together with a knowledge of the {n1i discussed in section 2,

allow us to consider changes in the loss of infectivity with time. For the case
where the {In(t)} are deterministic, we might for convenience count their
values as

n'i = O if ni(t) < 2

(3.9.5) n'i = j if j-- < ni(t) < i + -, j = 1, N -*,N 1,

n' = N if N -1< n1(t) < N.

In this case, the probability of loss of infectivity QD(t) at time t > 0 will be
given approximately by

(3.6) QD (t) = [P(i)]ni'
i=O

where nf are the values of the ni(t) counted as above.
Clearly, coverage of the virus is impossible for i < r, r being the minimum

number of antibodies which can totally cover the sphere. Thus, for i = 0,
r-1, P(i) = 0, when nO =n= nl-i =0, we have that

(3.7) QD (t) = I [P (i) ]ni'
i=r

These results, though clearly approximate, will give some indication of the
progressive loss of infectivity of the virus particles in time.

For the stochastic case, the probability of loss of infectivity Qs(t) is given by
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8

(3.8) Qs(t) = E II [P(i)]niQ(no, * , n,,; t)
(nil i=O

= ; [p(O)]n ... [p(8)]n * ao

= [aoP(O) + -- + a.P(s)]N
= [a7P(r) + *-- + a.P(s)]N,

where, in general, the ai(t) are those given in (2.17) and the Nai(t) reduce to
(2.12) in the special case where we set Xi = (s - i)a.
We illustrate the preceding stochastic process by means of an elementary

example. Let a = 900, N = 10, xo = 60(m = 6), s = 5, a = 1; then u = -10,
and
(3.9) x(t)= 60

x()6 - 11

It follows that the {aj(t)} are given by

ao(t) = Eno(t)/N = (6elt -5)-5

al(t) = Enl(t)/N = 5(6elt- 6)(6e0t - )-5,

(3.10) a2(t) = En2(t)/N = 10(6elt- 6)2(6e0t -5)-5,
a3(t) = En3(t)/N = 10(6elt- 6)3(6el0t -5)-5,
a4(t) = En4(t)/N = 5(6elt- 6) (6e at-

a5(t) = En6(t)/N = (6elt- 6)5(6el0t 5)-6

Since r = 4 in this case, it follows from (3.8) that

(3.11) Qs(t) = 5 (6el't - 6)4 P(4) + (6e'0t - 6)5 P(5)(6e10t - 5)r P (6e10t -5)5

= 8 (3 - 2e-'09) (6 -6e_t)4

This provides some indication of the dependence on time of the loss of infec-
tivity. Two remarks seem in order. First, it is clear that since for & 0 900 the
results given by Moran and Fazekas de St. Groth are asymptotic for large
values of i, it is necessary for good approximations that the number s of emplace-
ments be large. Secondly, while for simplicity in the model, we have allowed
random attachment of the antibody in any position on the spherical virus
surface, there are in fact only a fixed number of emplacements with specific
positions on the spherical surface at which the antibody may adhere. In our
example, taking s = 5, it is possible as t o-+ o to reach the limiting probability
Qs = 5/16 of noninfectivity. This would, in practice, be uselessly small. In fact
if there were only five emplacements on the virus particle, total coverage would
occur with probability 1 with 5 attachments. Thus, while the proposed model is
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not entirely unrealistic, it is at best a rough approximation to the true structure
of the process.

4. Antibody attachment to the tail of a bacteriophage

Let us now suppose that the virus V is a bacteriophage, and that a single
antibody attachment to its tail would prevent infectivity. We shall for simplic-
ity consider the case where the general attachment parameter Xi is of the form

(4.1) Xi = (s-i)a i =O, 1, * * *, s

as in (2.9), though the subsequent methods apply quite generally for any Xi- 0.
Considering either the deterministic or the stochastic case, we note that if tail

attachments are not distinguished from attachments in other positions of the
phage, then the {nj(t)} of (2.12) or the probabilities Q of (2.17) will fully describe
the attachment process.

If, however, we wish to distinguish tail attachments from others, then we
must concern ourselves with the classes

(4.2) {n.i}, {Nlii}, i = 1, *, s-1,

{nl,S-1},

of bacteriophage with 0, i, and s total attachments, respectively, the first suffix
position indicating a tail attachment. We see that

(4.3) noo = no, noi + nj,i_j = ni, nl,,si = n8.

Let us first examine the deterministic case. Here, the attachment parameters
associated with noo, noi, i = 1, . . . s - 1, are now in the form:

transition parameter
(O, O) (0, 1) or (1,O) Xo = as,

(4.4) (0, i) (O, i+ 1) (sX-i) i = a(s-1- ),

(O, i) (1, i) (s-i) = a.

Thus, we may write

dnoo dno-= -t- = - asxnoo,

(4.5) -dt g3ixl;R{(-)rO, i=l ,S-

dnost8-I = aXnuI.2 - axno,,
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or in mliatrix form

(4.6) dp, no,S-)tsI
dp L -a a _

where p(t) = fo x(r) dT as before, and n' = (noo, no* ,,8-,).
Using methods similar to those of section 2, the solution of this set of differen-

tial equations is easily found to be

(4.7) nOi(t) = N (s . 1) e-(8-i)ap(1 - e-aP)i, i = 0, , s - 1,

where p(t) = a-' log {(s - me-t)/(s - m)} as in (2.21). It follows, therefore,
since

(4.8) noo(t) = no(t) = N{e-t + s(s - m)-'(1 -e-t)!-
as before, that the iiumbers of phage with tail attachments are

n,,i-,(t) = ni(t) -no(t)

(4.9) = (i-1) no {( _)-Il}i,= 1,.*. ,s

1,1 .E0i is (s) °{Noni.,= n, N - ni = N - YEi N~~{'
Immunity may be considered to exist if all phage have a tail antibody attach-
ment, that is, if F=, ni,i1 = N, or, since the nj, _1(t) are not integers, when

(4.10) N - YI n, i- = Y no,i-1 = Ne-aP(t) = N _ et <
i=l i=1 - m

In the stochastic case, if we write
8-1

(4.11) R = R(noo, no,, nOS,l; ni.; t), ni. = N - L noi,
i=O

as the probability that there are at time t, noo, noi, * , n0o81 phages with 0,
s - 1 attachments, respectively, at other than tail positions, then, assuming
for x(t) the deterministic solution (2.11), we have that

(4.12) dR

8-i

, a(s - i - 1)(no0 + 1)xR(noo * *, noi + 1, no+i - 1, * * nos-,; ni.; t)
i=o

8-

+ ,I a(noi + 1)xR(noo, * * noi + 1, noi+i, , no,,-; ni. -1; t)
i=o

8-1

-,a(s -i)noixR(n(,o, no.-,; ni.; t).
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The generatinig function for these probabilities 4'(uo, , u0_1; v; t) satisfies
the partial differential equation

(4.13) -= E ax{(s - i - 1)uoL+l + v - (s- i)uo}at i=O ui

We may write in the usual way that

(4.14) -dt dd4= dv du0o duos-
(414 -_1 0 0 - ax[(s - 1)uoI + v -sUO?] ax[v - Su'-)]

so that if U' = (uoo, * , uo9_1), then
s -(s -1)

(4.15) dU= ax (s - 1) -(s - 2) U - axlv
dt 1

= ax(LU - vl).
Treating v as a constant, the solution of this is seen to be of the form

(4.16) e-aP(t)L(U - vL-11) = constant,
and it follows that

(4.17) ^6(uoo, *., Vl; t) = *[e-aP(t)L(U - vL-'1),v]
subject to the condition that 4i(uoo, ** , uo,; v; 0) = ui.
Thus,

-(U-vL-'i,v) = uo
so that, since L-11 = 1 for the matrix L in (4.15), we have

(4.18) ir[eaP(t)L(U - vL'11), v] = {[e-aP(t)L(U - vL-11)]o + V}N,

where [e-aP(t)L(U - vL-11)]o indicates the 0th element of the column vector.
It may readily be shown after some matrix calculations that the probability

generating function is of the form

(4.19) 4i(uoo, * , uo,1-; v; t) = E uoibi(t) + [1-E bN(t)] v}N

where the bi(t) are of the form
bo(t) = e-P(l)= {e-ut + s(s - m)-(l-e- ')J-8

(4.20) b s(t)= (s . 1) e-(8-i)aP(t)(1 - e-ap(t))i i = 1, s, s- 1.

These probabilities add up to

(4.21) E 1) e-(-i)aP(1 - e-ap)i = e-ap(t).

Thus, for phage virus, the probability of loss of infectivity is given by

(4.22) P{noo = 0, * , no-, = 0} = (1 - e-ap)N = {ms(l-e-At)}A
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5. Conclusion

Further investigations of more realistic models and their verification in the
laboratory would be of interest. In the case of the influenza virus, for example,
it is known that antibodies may bend over to attach both their ends to emplace-
ments on the same virus particle. It is also possible for one end of an antibody
to be attached to an emplacement on one virus, while its other end is attached to
a second virus particle; conglomerations of viruses and antibodies can thus be
formed. Clearly, the geometry of such models becomes more complicated than
that we have outlined earlier.

It may still be possible, however, to construct simplified models for them,
and to draw probabilistic conclusions from these. Similarly, for bacteriophage,
a model could be constructed in which antibodies have one end attached to the
tail of one phage particle while the other is attached to a second phage tail.
Such a model is not too intractable, and it is hoped to present results relating
to it in some work at present in preparation.
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